
Target Acquired
May 2022

Final Report: Automatic Target Recognition and Map Generation

Team Name: Target Acquired

Ryan Ylagan - Technical Co-Lead

● Problem Statement and Objective
● Introduction and Background
● Final Design Selection
● Analysis Plan and Results

Justin Campbell - Project Lead

● Feasibility Studies
● Final Design Selection
● Analysis Plan and Results

Rohan Wariyar - Communications Co-Lead

● Conclusion and Future Work
● Global, Environmental, and Societal Impacts

Preston Hart - Communications Co-Lead

● Introduction and Background
● Feasibility Studies

● Final Design Selection
● Analysis Plan and Results

Nicholas Aufiero – Technical Co-Lead

● Introduction and Background
● Feasibility Studies

● Final Design Selection
● Analysis Plan and Results

Problem Statement



Target Acquired
May 2022

Contributions: Ryan

The Austin metropolitan area has experienced flooding. The rising water levels have become so
significant that the Austin Fire Department (AFD) has begun to receive distress calls from
individuals stranded on the roofs of their houses trying to escape the rising waters. In order to be
more efficient with their search and rescue efforts, AFD needs to be able to know exactly if they
need to deploy their rescue teams and where to deploy them. To do so, the AFD wants to install an
unmanned aircraft system that is equipped to provide 24/7 search, surveillance, and precision
airborne delivery to aid in rescue operations.

In the water, the houses with individuals atop them create targets of interest (TOI). Some
individuals may be completely uninjured and in a safe enough position to wait for the water to
subside. On the other hand, some individuals may be in need of immediate medical attention. The
location of these homes, an assessment of the distress, and any other information gathered from the
surveillance should be transmitted to AFD

Our mission will be a joint effort with the Aerospace senior design team (ASE) and the
Computational senior design team in charge of the aerial drop payload. The ASE team will be in
charge of assembling an aircraft and programming its flight path for the search and surveillance
stage of the mission. The aircraft will perform this stage over an approximately 300,000 ft2 mowed
field with the TOIs represented by five 2 x 2 meter targets made with a large blue tarp. Atop two of
these TOIs are smaller objects that mark these targets as candidate targets for potential rescue; one
with a “smiley face” representing an uninjured person, and another with a “frowny face” signifying
an individual in need of immediate assistance.

Problem Objectives

Contributions: Ryan

Our main objective is to create a piece of automatic target recognition software that is capable of
categorizing our aforementioned TOIs as a candidate target and furthermore be able to classify the
type of assistance needed based on the face that lies upon it. We also need to return accurate GPS
coordinates of each TOI that we can return to the aerial drop payload team. This information then
needs to be compiled together along with images taken from our mounted camera to generate a map
of the targets and their classification. The speed at which our software is able to acquire and
identify these targets as well as how accurate our GPS locations are to the true location of the
targets will be used to score the ASE team’s mission.

Some of our objectives that are not required but may be good to include as stretch objectives are:

● An interactive map that is paired with the respective GPS coordinates
● Image recognition software that can identify human emotion rather than just our preset TOIs
● A more efficient algorithm that improves accuracy and required search time
● An algorithm that is capable of identifying targets on more complex terrain rather than just

an open field

Introduction and Background



Target Acquired
May 2022

Contributions: Rohan, Preston, Ryan, Nicholas

Every year, the aerospace senior design teams are tasked to perform a demonstration mission that is
to be conducted at the aforementioned 300,000 ft2 fields. This mission includes a few important
steps that include takeoff and deployment of the aircraft, which will be handled by the aerospace
design team. Our involvement concerns the search and surveillance steps of the mission that occur
after the aircraft reaches the cruising altitude of between 200 to 300 ft. During this phase, our
software should be able to automatically recognize the numerous targets laid out on the field as well
as classify these targets based on their display. In previous years, this phase was done manually, but
this is now done completely autonomously due to our involvement.

Overall our mission and its objectives are not necessarily a unique problem. There have been many
well-documented case studies of other teams creating an unmanned aerial vehicle equipped with a
mounted camera software for image recognition and map generation for the purpose of search and
rescue. In one particular study, a Japanese team used a small UAV to generate a map of an area
recently affected by an earthquake. This map detailed the surrounding area’s geological features
and marked points of interest that may be considered important for a search and rescue team, such
as a collapsed house. Along with the map, the aircraft would return data such as position, altitude,
and time that is specific to each individual photo.

Computer vision is an area of technology that a dense amount of research and development efforts
are currently being poured into. The ability for equipment to visualize its surroundings, make sense
of the environment that it is in and make smart decisions from such perceptions has been a major
breakthrough in autonomous capabilities. Specifically, in the case of unmanned aerial vehicles,
many military and search and rescue operations have been seeking out computer vision software to
automate tasks that are time-consuming and error-prone for the human eye. There is numerous
open-source computer vision software available for implementation and most differ in how they
algorithmically learn the object(s) of interest and then proceed to evaluate and make decisions on
new pieces of data. Both of these key components of image evaluation are integral parts of the
runtime complexity that computer vision software are judged on and ultimately a piece of the
process that went into evaluating the software discussed in this project proposal. As a note, there is
a difference between locating and mapping targets and areas of interest. Today, more modern
computer vision algorithms are seeking to combine the process of locating and mapping into one
continuous process that uses minimal training data. This combined methodology is referred to as a
SLAM process and is the architecture behind self-driving cars as well as autonomous ground-based
robots.  However other computer vision algorithms simply seek to find large localized differences
in color contrasts in order to identify targets of interest. Although this category of computer vision
algorithms leans toward being less computationally intensive than other methods, they are not
always as practical since there is a large emphasis placed on color differences which could lead to
difficulties when color is not the key factor of identification.

Because UAVs have become extremely popular over the past decade, the equipment required to run
computer vision on the go has become widely available. Performing computer vision from up to
300 feet in the air requires a camera with enough resolution to accurately capture small ground
targets. UAV computer vision also requires a small, light computer that can run independently but
in communication with the main flight computer. This computer must be powerful enough to
process the images acquired from the camera in real-time. With today’s processors, that is possible.



Target Acquired
May 2022

Feasibility Studies

Contribution: Justin, Preston, Nicholas

Concerning the hardware of our project, we had to make decisions about what camera and what
coprocessor we want operating within the UAV. The selection process for the camera will be
discussed first. The team again began the Preliminary Design Stage by assembling a table with
preliminary criteria for the camera that were determined to be the most important for the camera to
satisfy the project’s end objectives for both the COE and ASE design teams.  The ASE team
emphasized the importance of weight reduction on their aircraft as weight plays a large role in their
final score. As such, the weight of the camera was an important consideration for us. Other
important considerations were the operating resolution, the frame capture rate, the output interface
terminal type, the camera’s physical dimensions, and the available documentation. The three
cameras that were considered in the preliminary design stage were the Topotek 10x zoom, the
Lumenera Lt-C, and the RunCam Zoom. After a literature review on similar ATR projects, we
found a team that had successfully performed ATR at altitudes of around 200 feet using a
5-megapixel camera. We used 5 Mpx as the minimum criteria for the operating resolution.
Similarly, we set aside a frame capture rate of 20 fps as the minimum criteria according to
documentation found in our literature review. With respect to the total weight and physical length
dimensions criteria, values were set in collaboration with the ASE Design Team to operate within
their weight and mass distribution constraints. This will ensure that the implementation of our
hardware products does not impact the vehicular performance of the UAV. With respect to the other
two, the team used a more subjective approach to determine the minimum criteria. For the type of
interface output terminals category, the criteria were satisfied for a particular design if it contained
at least one in any combination of USB, HDMI, or MIPI CSI output terminals. For the available
documentation category, the criteria were satisfied if documentation was easily accessible, readable,
and verified/validated.

After the preliminary criteria were assembled, each design was documented according to whether
or not it satisfied the criteria. The team then set aside three critical criteria that were determined to
be the most important for the camera to achieve its end objectives, namely, the operating resolution,
frame capture rate, and type of interface output terminals. The cameras that satisfied a majority of
the critical criteria were downselected to the Feasibility Analysis to be considered in the final
design cut. Out of the four cameras considered in the preliminary design stage, only the RunCam
Zoom did not meet a majority of the criteria. In particular, it neither met the operating resolution
criteria nor the frame capture rate and was thus eliminated from consideration.  After downselecting
our preliminary design ideas, we assembled them into a weighted scoring matrix along with the
criteria specified in the preliminary design phase as shown in Figure 1 below. This process marked
the beginning of our Feasibility Analysis to obtain final designs from the downselection. Using a
linear scoring methodology, the criteria were ranked from most to least important, and assigned
numerical weight values in descending order of magnitude.



Target Acquired
May 2022

Total criteria scores for each downselected design were obtained by summing the contribution from
each criterion according to whether or not they were satisfied. For example, the Topotek design did
not meet the criteria for resolution range and was thus allocated a score of 0. However, it did meet
the criteria for frame capture rate and was thus allocated the number of points corresponding to that
criteria rank (since the rank is the second-highest on a list of 6 criteria, this meant 5 points). Using
the metric shown for evaluating the “goodness” of a design according to the percentage of criteria
weight satisfied, it was determined that the Lumenera Lt-C and the Arducam IMX were the most
desirable options. The Topotek was safely removed from contention because it did not meet the
resolution criteria, and is poorly documented. To weigh the two remaining cameras against one
another, the Lumenera Lt-C was removed because it is restricted to taking still images instead of
streaming video, and, after deliberation, the video became a hard requirement for the ASE team. As
such, we pivoted to the Arducam camera, which meets all of our important requirements, including
resolution, weight, and ease of use. As such, we will be moving forward with the Raspberry Pi
Camera in our final design.

The ATR code will run on a coprocessor. This coprocessor must fit within the middle section of the
UAV, it must meet stringent weight requirements so as to not significantly shift the center of gravity
of the UAV, and it must be able to read video data from the camera as well as flight data from the
Ardupilot. The coprocessor must also require no more than 5 volts to run, and it must also be able
to effectively run the ATR algorithm within a reasonable time. Raspberry Pi’s are a user-friendly,
effective solution to edge computing. The model 4 is powerful enough to run our reasonable ATR
algorithm. Most importantly, from the literature, it has been determined that many teams have been
able to solve similar problems using the Raspberry Pi. We also looked at the Jetson TX2
co-processor. This coprocessor is a machine learning workhorse with 6 CPUs and a GPU. The
Jetson might be required for highly complex ATR tasks, but it is overkill and too heavy for our
project. In following the same procedure as above for the camera, namely, identifying critical
criteria for co-processor designs, documenting designs according to the criteria that they satisfied,
and down-selecting preliminary designs that met a majority of these criteria, the decision for the
co-processor was easier. In particular, both the Raspberry Pi model 4, and the Jetson TX2 met a
majority of the critical criteria in the preliminary design phase and were documented for Feasibility
Analysis. In the Feasibility Analysis, it was determined that both the Jetson and Raspberry Pi were
acceptable designs satisfying a considerable majority of the criteria weight. The differentiating
factor between the two lies in the power supply voltage, and weight. In particular, the Jetson
requires a much higher voltage supply and is much heavier than the Raspberry Pi. As such, we
selected the Raspberry Pi model 4 as our final design.



Target Acquired
May 2022

Amongst many different ideas that were discovered through extensive research into the problem of
automatic target recognition and aerial map generation, three different algorithmic software
approaches were evaluated. OpenMV is another open-source computer vision software that was
researched after coming across a published paper by a group of engineers that developed an
unmanned aerial vehicle able to identify and track moving objects. OpenMV differs from OpenCV
in the sense that it was developed as a “machine vision” solution to object detection rather than a
“computer vision” solution. That is to say, where OpenCV requires a camera connection typically
via USB to a co-processor, OpenMV integrates a small camera directly into a customized
co-processor. The custom co-processor comes equipped with a prebuilt integrated development
environment (IDE) for users to modify and write their own objection detection algorithms. The
customized IDE and camera integrated co-processor alleviate some of the issues that could arise
while interfacing hardware components. This open-source software is also advantageous in its low
latency and minimal resolution loss when transferring images from the camera to storage on the
co-processor. However, out of a desire to keep the co-processor as lightweight as possible, the
camera only has a resolution of 640x480 Mp and a small field of view (FOV). The stock lens can
be swapped out for better lenses, but the better lenses come at a more expensive price. Following
the same procedure as above for the camera, and co-processor, OpenMV was not a solution we
moved into the Feasibility Studies phase primarily due to the implications this solution would have
on the aerospace engineering design team that the automatic target recognition product is being
built for. Currently, the ASE team has designed their aircraft so that the co-processor is housed
within the body of the aircraft and the camera is mounted underneath and on the outside of the
fuselage. With a camera that is integrated directly into the co-processor, major design changes
would have to be made to get power to the coprocessor while making sure the camera would still
have good visibility underneath the aircraft and would be thoroughly secured to the aircraft.



Target Acquired
May 2022

RGB-based recognition, another valued approach to automatic target recognition, looks to expose
color contrasts within an image frame to confidently identify the object of interest. In the case of
the posed project objective, this method would work well to identify the high blue contrast of the
tarps that the targets of interest will rest on and are in stark contrast in color to the green grass of the
ground within the search area. By filtering out each pixel's red and green values and honing in on
the numeric blue value, areas of dense blue in an image can easily be identified. The RGB-based
recognition algorithm finds the max and means pixel contribution values of blue in the image and if
that max - mean is greater than the predetermined threshold then it can be confidently assumed the
high area of blue in the image is a tarp. Where the RGB-based method on its own fails to meet the
project’s objective is differentiating between the smiley and frowny faces of the targets of interest
that rest on the blue tarps. The reasoning behind this stems from the fact that the faces of the target
do not differ in color, but in orientation; an RGB-based method would struggle to make a
distinction purely based on differing orientations.

The final, and most feasible, option when approaching target recognition software is OpenCV, or
Open Source Computer Vision Library. After researching the available algorithms and looking at
codes from OpenCV, we decided to utilize the Haar Cascades algorithm for target recognition. Haar
Cascade classifiers are machine learning object detection programs that can potentially identify
objects in photos and videos. The algorithm begins by calculating Haar features in the image or
video resolution. Haar features are calculations that are performed at specified locations in a
detection (position) window. The calculations involve comparing the differences between the sums
of pixel intensities. Examples of Haar features include edge features, line features, and
four-rectangle features. Internal images are created with the inclusion of Haar features. However,
since the majority of the internal images created will be irrelevant to the user's project, something
like Adaboost can be used to determine the “best” features. Once these features are chosen, they are
used to train the classifiers. Weak classifiers are often combined together to create stronger
classifiers. Finally, the classifiers are implemented and they’re able to identify objects. One
essential item to note, these algorithms will require training by using positive and negative images.

Unfortunately, Haar Cascades has a high false-positive rate. This is due to the age and nature of the
algorithm; more recent ones offer a smaller margin of error. However, with enough tuning, the Haar
Cascades code can be optimized against false positives. Furthermore, despite the potential pitfalls
of larger margins of error and high false-positive rates, this algorithm continues to remain
computationally inexpensive while operating at high speeds. Especially since we will be using a
Raspberry Pi, it is important that we do not “overwork” the co-processor. As such, OpenCV is
currently one of the only options available that meets all of our software and hardware
requirements. Additionally, these algorithms are well documented and developed. Python has an
OpenCV library that allows for the potential inputs of images, videos, and live feed to our
algorithm.

Consequently, we proceeded to down-select both the OpenCV and RGB Recognition designs into
the Feasibility Studies. It was determined that the OpenCV software is the optimal standalone
design while the RGB Recognition software satisfied a moderate amount of the criteria. However,
given that the RGB Recognition system can be integrated with the OpenCV software for image
identification/classification, the team will be proceeding with a combined Haar Cascades and RGB



Target Acquired
May 2022

Recognition algorithm as our final choice on how to address the issue of object recognition in
photos and videos.

Final Design Selection Detailed Design

Contributions: Nicholas, Ryan, Justin, Preston

The final design of our system was an adaptation of the conclusions made during the feasibility
study phase. We continued to use the Raspberry Pi as our onboard computer and the Arducam as
our computer vision camera. However, as we began to write our code for recognizing tarps and
smiley faces, and especially as we began testing that code against real images, we realized that
OpenCV’s Haar Cascades modules were hard to work with. We pivoted towards RGB thresholding
and feature matching. The other ATR team was proceeding with this method, and the team leader
was knowledgeable about topics in computer vision, so we felt comfortable with this pivot. The
modules we used for analyzing colors and features within images were still part of OpenCV, and as
such the shift was not too large.

Hardware

Due to a shortage of Raspberry Pi’s, we were only able to find a Model 4 with 2 GB of RAM
instead of the 8 GB model that we had requested. The 8 GB of RAM was requested due to the
expected load of processing many image frames per second. However, the 8 GB RAM was not a
hard requirement. Next, we connected the Arducam to the Raspberry Pi via a CSI ribbon cable.
These cables are extremely flexible, which was useful for routing the cable in the plane. However,
the cables are also fragile, especially the pins at the connections. After breaking a pin on our first
cable, we bought a pack of cables so that we would always have extras, especially during flights.
For the SD card, which essentially acts as the hard drive for the Raspberry Pi, we purchased one
with 64 GB of storage. This SD card was also approved for video streaming, meaning that it was
capable of high data throughput, which is a requirement for our problem. Below is a picture of the
Raspberry Pi connected with the Arducam via the CSI ribbon cable.

Above is our total hardware
system. The camera was placed flushed with the bottom of the plane, and the Raspberry Pi needs to
be located near the Pixhawk, which is the onboard flight computer. To power the Raspberry Pi and
to set up a communication link between the Pi and the Pixhawk, we connected both computers via
the pin schematic below, connecting the Pi’s transmit and receive pins to the Pixhawk’s telemetry



Target Acquired
May 2022

port and the +5V and ground pins between both. This connection established power transfer from
the Pixhawk to the Pi. The connection also established a serial UART connection, which is a
configurable communication protocol among the hardware.

After the hardware was set up, the Pi was configured for serial communication, which was enabled
in the Pi’s settings. Next, a software port was designated on the Pi which sends and receives
messages from the Pixhawk– we decided to disable the Pi’s Bluetooth and dedicate that software
port for our serial connection. Finally, the frequency of the serial connection, also known as the
baud rate, between the Pi and Pixhawk was agreed upon. We settled on 921600, which means the
port is capable of transferring up to 921600 bits per second. After this, the software/hardware
interface was set up, we downloaded the MavProxy library, which implements the Mavlink
communication protocol into Python. At this point, the Pi is set up with power, and we were able to
control the camera and communicate with the Pixhawk, all via a Python script.



Target Acquired
May 2022

Software

To make the process to kick off our script as simple as possible, we added our program to a file in
the Pi’s home directory called “.bashrc”. This bash script runs each time the Pi boots up. As such,
by adding our program to the end of this script, our program runs each time the Pi gets power.

This flow is designed based on the ASE team’s mission plan. As mentioned, our script runs almost
immediately once the Pi gets power, which is when the plane turns on. After the plane is turned on,
time is spent checking the plane and taxiing it to the runway. Because we don’t want the camera to
take images of the ground, we wait 5 minutes, by which time the plane is usually in the air. We
decided to gather map images first because, per the mission plan, the plane cruises at 320 feet
during this first stage. Being at a high altitude lets the camera cover more ground with fewer
pictures, which makes map stitching easier. After three minutes, the automatic target recognition
script kicks off. During this stage, the plane is flying autonomously and will descend to 200 feet for
the search and surveillance phase of the mission. The plane flies according to a preset mission file
which is made of waypoints that the plane should hit. The final waypoint is waypoint 30.
Leveraging the serial connection with the Pixhawk, the ATR script can check which waypoint the
plane is about to hit. So, while the next waypoint is less than 30, ATR continues running. Then,
when the condition is met, ATR stops and we hand off control to the ADP team’s script. After the
flight is finished, we will check the map images to see which are best suited for stitching. Though
this stitching could also have run during the flight, we wanted to reduce the complexity of the
program as much as possible to avoid in-flight errors.

Next, we will discuss, in a high-level overview, the flow of our software specifically developed for
the ConOps mission that the Aerospace Engineering Design teams are tasked with completing. As
mentioned above, the Raspberry Pi camera is connected directly to the Raspberry Pi and this is how



Target Acquired
May 2022

live video feed from underneath the aircraft was transmitted into our developed scripts. We
controlled the camera using the OpenCV library. During our drone flight to test out capturing
images, we found that recording during the entire flight created movies of up to 15 GB in size. This
file size is too large and unwieldy for our SD card, so we decided not to record our entire flight.
Instead, OpenCV has a function that enabled us to stream input from the video camera, run our
target recognition algorithm on that input, and only save those inputs which recognize targets of
interest. In this way, we drastically reduce the amount of storage we were using. From the live
video feed, still captures were pulled in along with the latitude and longitude coordinates that came
from the Pixhawk. Next, the frame from the live video is modified to remove any distortions caused
by slight impurities and curviness of the image around the edges of the frame. After being
undistorted, the frame is then resized by cropping the width and height to help increase the
resolution to complete the preprocessing of the image. After these modifications have been made
the frame is then pushed into the Automatic Target Recognition part of the software. First, an RGB
Thresholding approach is used to detect the deep contrast between the blue of the tarp and the green
of the ground if a Target of Interest is visible in the frame. If there is a target in view, the
thresholding method draws contours around the edges of the blue tarp and filters out all other
unwanted parts of the image. The feature recognition algorithm is then applied to this cropped
image to distinguish if the target of interest is a critical target, a frowny face, or a non-critical target,
a smiley face or a blank tarp. Specifically, FLANN, a feature detection method, is used to make
these decisions. The contoured-cropped frame is passed into both a feature detection method
tailored for a smiley face and a frowny face. Based on the number of key-point connections made
for each of the two methods, the designation of the target type is made. If the number of key-point
connections made between the training image and the test image, or contoured-cropped frame, is
less than 4 then the target is classified as a tarp. If the number of connections is greater than four
then the method with the larger number wins the designation.

After this decision is made the Automatic Target recognition algorithm is completed and the
software moves on to the calculation of the GPS coordinate of the target. In this phase, the pixel
location of the identified target, within the original frame from the live video, is transformed into a
latitude and longitude coordinate. This is done using the SWATH width of the Raspberry pi camera
to determine how many meters are within one pixel of the camera’s view. The distance between the
center pixel of the frame and the location of the center of the target is then calculated. This distance
in the x and y directions is then converted into meters using the SWATH width and then converted
from meters into degrees and tacked onto the latitude and longitude coordinates of the center pixel
which are the GPS coordinates pulled from the Pixhawk once the original frame is extracted from
the live video. The GPS coordinates are then stored in an array within the code that houses all the
GPS coordinates of the identified targets throughout the search phase of the ConOps mission. The
identified targets are grouped with other targets that are within close proximity to each other. Once
the search phase is complete, this list of identified targets is then refined and saved in a text file that
is passed off to the ADP team to be used as input to their code. The target refinement process will
be discussed in further detail later in the report. Finally, after the refinement process has been
completed a map of stitched images of the area of interest (AOI) is generated and then overlaid
with markers and text boxes that display the refined latitude and longitude coordinates of the
identified targets. In practice, this map would be used as a resource for the Austin Fire Department
as they try to rescue or get supplies to people in critical need.



Target Acquired
May 2022

Shifting gears now to a discussion on the final design for the camera calibration software, an
algorithm in place for previous flight tests leading up to the second-to-last flight test (directly
preceding the preliminary results presentation) used a binary mask methodology to map the
grayscale image equivalent of the colored training
image (hardcopy tan-brown chessboard) into a fully
black-white image using image thresholding before
ultimately identifying the pixel locations of the interior
points in the pattern. Unfortunately, this method had
severe limitations in the ability of the resulting
calibration parameters (camera calibration matrix, and
distortion vector) to consistently undistort warped
image frames depicting features of the AOI. In
particular, this method was heavily dependent
on the distribution of light intensity and glare
over the image in addition to the “levelness” of
the surface. Inconsistencies in these properties made it difficult for the algorithm to identify interior
points in associated training images producing resultant calibration parameters that were not robust
enough for undistorting test images spanning an expected large range of warped properties during
the mission. An example of one of the few training images whose interior points were identified,
and that was successfully undistorted is shown in the figure above.  Effective in the preparation for
the final ConOps mission and final simulation run, changes were implemented to the algorithm
producing the flowchart shown in the figure below. In particular, the algorithm involved first
mapping the training image from an RGB to a Grayscale colorspace and then feeding the resultant

image into a for loop where the algorithm iterated through the pixels of the
image and stored pixels coinciding with identified interior points of the image
pattern. The pixel locations were highlighted on the grayscale image similar
to the feature of the previous algorithm. Once the last training image was read
into the workspace, and analyzed, the pixel locations of the interior points of
each of the images were used to obtain a resultant camera calibration matrix
and distortion vector. These parameters will be discussed in more detail in the
“Analysis results and discussion” section of the report.



Target Acquired
May 2022

Undistortion

The next step in the detailed design of the software system involved developing and implementing
an algorithm for removing
radial and tangential distortion
from test images of the field
given the calibration
parameters (camera matrix, and
distortion vector) returned
from the camera
calibration
algorithm. In
referencing the flowchart presented in the figure to the left, the first two steps in
the algorithm involved reading in the two calibration parameters into the
workspace followed by storing the size of the distorted test image. Then, the
calibration matrix, distortion vector, and image size were used to obtain a
transformation matrix unique to the input test image. Next, an undistortion and
rectification transformation map in the form of vectors in x and y was evaluated
using this unique transformation matrix. The vectors in this map quantify how
the distortion in the 3D world frame is undistorted into the corresponding 2D
image frame using rectilinear geometry. Finally, the transformation map was
applied to the original test image to remove distortion. Before and after images
showing a digital training image of a chessboard being undistorted after
applying the transformation map are shown in the figure above and to the right.

Target Proximity and GPS Coordinate Refinement



Target Acquired
May 2022

As mentioned above, after a target has been identified and its GPS location has been nailed down it
is added into a grouping of previously identifications that are in close proximity to one another
relative to their latitude and longitude coordinates. Our algorithm checks the distance between the
current target and the average latitude and longitude coordinates of each grouping of targets if the
distance is within 11 meters then the current target is grouped with the targets in that group.
Essentially, this grouping of targets is to say that the camera and calculation of the GPS coordinates
are error-prone and need some cushion when calculating the latitude and longitude coordinates of
the same target from different angles. This grouping of targets is an iterative process throughout the
duration of the search phase of the ConOps mission. Once the search phase has been completed, our
software moves into the target refinement process which takes in the large array of targets grouped
by their proximity to one another. If the total number of targets within a group is less than 4, then
the group is thrown out as false identifications. The number 4 was selected based on the results we
saw during the flight tests that our ATR algorithm was tested on. After removing the false
identifications, the average latitude and longitude coordinates for each grouping of targets were
found along with the counts of each type of target within the grouping. The target type with the
largest number within the group became the final designation for the refined target. For instance, if
a grouping of targets contained three frowny faces, ten tarps, and twenty-five smiley faces, then that
grouping would be classified as a smiley face. Once this refinement process is completed, the final
target classifications along with their GPS coordinates were saved in a text file on the local
filesystem for the ADP team’s use.

Map Stitching

For the purpose of creating a map of our area of interest, our final design involved the use of an
image stitching algorithm. Our initial plan was to have the algorithm run autonomously as the plane
is flying; however, due to complications concerning how the algorithm might choose images from
those that were taken, we ultimately decided to run it manually in post-processing. Thus, the plan
would be to manually choose which images to feed into the algorithm once we receive the images
from the flight. The figure below displays the overall workflow for our algorithm.



Target Acquired
May 2022

It utilizes SIFT feature extraction, FLANN feature matching, and homography to receive the
transformation matrix. The algorithm then iterates this process for every image in the given
directory and returns images each time a new image is stitched onto the final image. The program
would be loaded onto the raspberry pi to be run from there.

Identification and GPS Coordinate Overlay Algorithm

  The last step in the flow of the software system involves an application of an algorithm that
overlays location pins, and text boxes with GPS coordinate identifications given the generated map
output from the stitched image algorithm. A flowchart depicting the movement of information in
this algorithm is shown in the figure on the left. The first step in the procedure involves reading in
the text files with GPS coordinates, identification strings, and the file path to the stitched map.
Then, the file path to the text box and location pin overlay images are read into the workspace.
From here, the identification strings and GPS coordinates from the refined GPS coordinate text file
are stored in lists. Next, the image size of the stitched map is stored. Then, the algorithm iterates
through each identification in the list, and for each identification of tarp or. TOI, it first computes
the GPS latitude and longitude transformation factors which rescale the GPS location of the
identification to the GPS range of the AOI in the image. From here, the x and y pixel locations of
the centroid of the TOIs and tarps on the image are approximated by rescaling the GPS coordinates
using the image size and the transformation factors. Then, the location pin is overlaid at this
corresponding pixel location. From here, the text box is overlaid at a hardcoded pixel location

slightly offset from the pixel location of the location
pin and identification to prevent overlap. Lastly, the
identification string and GPS coordinates are
overlaid onto the text box. Then, the algorithm
checks if the last GPS coordinate pair/identification
has been reached and if so, then it ends the loop,
and the resultant overlayed image of the generated
map is saved to the local file system effectively
marking the final procedure of the software system.



Target Acquired
May 2022

Script Flow + Pixhawk Communication

Finally, we needed to decide how to control each of these pieces of software as the plane flew. An
added complexity of our project is that we have no access to the Pi while it is flying. This means
that we can’t send commands on the terminal, and we can’t see what is happening as the plane is
flying. It is hard to connect to the Pi while the plane is on the ground as well because the Pi is
located under the wings of the airplane.

Analysis Plan

Contributions: Nicholas, Ryan, Justin, Preston

Our first idea to analyze the code we had was to acquire training data that was as realistic as
possible. First, we took pictures of the tarps and faces from a parking garage about 80 feet high. We
had some baseline data to begin running the RGB and feature matching code with these pictures.
Then, to acquire more realistic data both in height and vibrations, we mounted our hardware system
onto a drone and flew that drone out over the flight field. During this test, we recorded video of the
drone flying over tarps and faces. Afterward, in the lab, we split the video into frames and ran our
algorithms on those frames. The drone video contained significant vibrations, but it was still helpful
in getting realistic footage from 200 feet in the air of the flight field, of the tarps, and of the color
contrast between the field and those blue tarps.

We also had test flights on the plane itself to test our code. During the first test flight, we simply
recorded video from the flight. With this video, we then narrowed down on the color threshold for
our RGB algorithm. Then, we tested our ATR script against this video to understand what was
being classified correctly and what was not. We learned that when the plane banked and grabbed
pictures of trees, those trees sometimes led to incorrect classifications of faces. Pictures early on in
the flight when the plane is still on the runway, taking off, or grabbing images of the track and the
building, also contributed to false-positive classifications of both tarps and faces. False-negative
classifications (i.e. a face is in the video but did not get recognized) usually occurred when the feed
was vibrating excessively or the plane itself was banking too extremely. During those sections of
the test flight when the plane flew parallel with the ground, the ATR algorithm was successful in
classification.

Our software, on the plane, was dependent on a successful connection between the Pixhawk and
Raspberry Pi along with a successful transfer of live video from the camera to the Raspberry Pi.
Both of these connections were tested thoroughly in the lab to make sure our software was set up
correctly to interact with both of these hardware components. A break case for our software would
be if any of these two connections failed for any reason. Without a connection to the camera video,
and more specifically still frames, would not be pushed into our software for the ATR process to
analyze, thus causing the software to break. Another break case, and ultimately the reason that our
software failed during the actual ConOps mission, is when there is a failed connection between the
Pixhawk and Raspberry Pi. If our software is unable to establish a secure connection with the
Pixhawk then the script waits and essentially does nothing. Without this connection, the live video
feed is not initialized and a log output file is saved to the local file system denoting a failed
connection.



Target Acquired
May 2022

Break cases on the actual feature recognition part of the software are not as detrimental to the
functionality of the code. There was a try-except block placed into RGB and thresholding part of
the code to take care of any frames that were not suited or liked by OpenCV. This way the software
could toss any frames like this and move on to the next frame.It is also worth noting that the video
recordings of the three flight tests were saved as training data for use to fine-tune the thresholding
values of the RGB’s contour-cropping methodology when a trap was recognized within a frame.
The cropping was heavily dependent on the altitude the plane was flying at. For instance, at lower
altitudes, the tarps and targets of interest appeared bigger in the frames, and thus the cropping
threshold needed to be increased to account for this enlargement. Once we knew for certain the
altitude at which the search phase of the ConOps mission would take place at, which was 200ft, we
were able to tune the thresholding accordingly.  This same methodology was applied to the tuning
of the threshold used to determine the proximity of targets to previous identifications. This was a
difficult task to perform as we were never able to test the grouping and refinement processes in
flight. So our educated guess of 11 meters was used to give the GPS calculation the proper cushion
it needed to recognize if a target had been identified already.

Analysis Results and Discussion

Contributions: Nicholas, Ryan,
Justin, Preston

Decision Matrix

To begin the analysis results
section, a detailed discussion of our
team’s decision matrix shown in the
figure below with deliverables and
stretch goals delineated according to
whether or not they were
accomplished will be provided. To
first provide context into these
accomplishments, it should be
recapped that the team was unable
to acquire meaningful results from
the final fly-off mission as a
consequence of a connection issue

between the Pixhawk and the Raspberry Pi
that prevented our software system from
recording video in flight, and thus

performing the target recognition and map generation. Thus, all tasks listed as successful were
completed in the context of a post-fly-off simulation run using the other Image Processing Team’s
video feed from their respective fly-off. In referencing the top-left partition of the matrix, we have
the easy-to-do guaranteed deliverables. The first involved capturing video of the AOI and collecting
GPS coordinates of the field. This deliverable was met through the acquisition of the other image
processing team’s video feed from the mission, and by using a random number generator to
simulate GPS coordinate locations within the bounds of the AOI. With that being said, although this
wasn’t implemented in the mission, it was confirmed to be functional during pre-flyoff tests The



Target Acquired
May 2022

second guaranteed deliverable involved generating a map of the AOI given identifications from the
target recognition algorithm and GPS coordinate readings. This deliverable was also met during the
simulation run where the team’s software system used image slicing and stitching to produce a
generated map of the field given the provided video, and associated GPS coordinate positions in a
text file. The third and final easy-to-do guaranteed deliverable involved transmitting the generated
map to our contractor (namely, David Meskill of the ASE department). Since the simulation was
performed after the mission fly-off date, our team was unable to transmit our results to our
contractor for scoring and thus this deliverable was not met. Shifting gears to the hard-to-do
guaranteed deliverables, the first item involved refining GPS coordinate positions to get more
accurate target and tarp locations. In particular, the goal was to implement an algorithm that refined
GPS coordinate locations corresponding to TOI’s/tarps so that values within a small positional
threshold were grouped into individual lists, and the average value of the coordinates in each list
would be evaluated and stored as the approximate GPS location for that identification.

This deliverable was successfully accomplished during the simulation run. The second hard-to-do
guaranteed deliverable involved implementing a target recognition system that could accurately
classify TOIs as critical and non-critical. The results from both the simulation run and final flight
test correctly identified each of the tarps/TOIs with an additional erroneous tarp identification, and
thus, were deemed successful. Shifting gears to the bottom-left partition, we have easy-to-do stretch
goals. The first of the items involves the goal of identifying miscellaneous features in the AOI such
as trees, grass, changes in elevation, etc.). Unfortunately, due to time constraints, our team was not
able to implement this feature of the system. The second goal involved incorporating interactive
elements into the generated map. In a similar fashion, our team was not able to implement this
feature due to time constraints, however, in consideration of future work, the team would consider
using Python’s “Tkinter” package for implementing an interactive GUI that would enable the user
to zoom in and out of the published map and activate collapsible windows that display
identifications and GPS coordinates. Lastly, the bottom-right partition depicts hard-to-do stretch
goals. The first involved pairing GPS coordinates with image frames from the video feed. Although
randomly generated during the simulation, GPS coordinates mimicking the centroid of the AOI in
the image were paired with associated image frames. The second involved implementing a more
efficient target recognition algorithm that improved accuracy and/or optimized runtime. We were
able to accomplish this goal by modularizing our code, and making changes to threshold parameters
in the target recognition algorithm that improved classification accuracy in the days leading up to
the final fly off and successfully implemented this integration during the simulation run. Lastly, the
identification of human faces/emotions was set aside as a hard-to-do stretch goal that the team was
unable to complete due to time constraints but would likely be implemented using a form of feature
recognition similar to that used for the targets.

Camera Calibration

Shifting focus to the results of the camera calibration, we have an image in the
first figure below which depicts the properties of the camera calibration matrix.

As a recap, the  “fx'' and “fy” parameters stand
for the x and y components of the focal
length, and the other two parameters
represent the components of the optical

center. As touched upon in the design section, the images



Target Acquired
May 2022

of the hardcopy chessboard contained inconsistent light intensity and glare properties, in addition to
portions of the chessboard being at different relative displacements (i.e. unlevel surface). This
generated a matrix (shown in the second figure) with limitations in its ability to undistort test
images of the field and ultimately, it was determined that the stitching algorithm did not effectively
overlap images throughout the AOI given the undistortion parameter. To account for this, a new
batch of training images was obtained that depicted images
of a digital chessboard with uniform light intensity and
minimal glare whose resultant calibration matrix is shown
in the third figure to the right.  After applying the
resultant camera calibration matrix and distortion vector
to the same batch of test images (batch from a previous
flight test), it was determined that the stitching accuracy
improved significantly while the undistortion of
individual images also improved noticeably. The team hardcoded the calibration matrix and
distortion vector from this calibration and moved forward to the mission fly off and simulation run
with these parameters. Ultimately, it was determined that the undistortion and stitching overlap
accuracy of the images in the generated map from the simulation run were qualitatively superior to
that of the results obtained from a previous flight test using the former iteration of chessboard
training images. Thus, the calibration modifications were fully successful.

Undistortion

As addressed in the previous section, the camera
calibration matrix and distortion vector from the
calibration algorithm were used to undistort test images
of the field, and it was determined that the parameters
obtained from the iteration of training images of a
digital chessboard were largely successful at removing
both radial and tangential distortion from the images.

An application
of this
undistortion to
a field image
shown in the
figure to the
right produced an undistorted test image shown in the
figure to the left. It is visible that the warped/curved field
lines at the bottom-left portion of the distorted test image
were successfully straightened.



Target Acquired
May 2022

Simulated Results

Since we were unsuccessful in gaining meaningful, or really any, results from the actual ConOps
mission fly-off, we resorted to using a video captured during the flight by the plane of the other
Aerospace Engineering Design team. In an effort to showcase the components of our software that
had been thoroughly tested, the video was passed into our software and sliced up into frames in the
same manner that a live video would have been. We cropped this video into a ten minute segment
of the plane flying directly over the targets of interest. After ten minutes of frames being passed
through the ATR algorithm, the following results in the chart below were obtained.

The same two training images of the smiley and frowny faces used in previous flight tests were
used to do the feature matching during the simulation. Observed above are a significant amount of
tarp and smiley face identifications which is a by-product of the ten-minute segment of the video
that was used having a high concentration of time spent with the blank tarps and smiley face in
view. A slight modification had to be made to the GPS coordinate retrieval since our software was
not connected to a flying plane that had live latitude and longitude coordinates nor a live altitude
reading. So instead of pulling these values from the Pixhawk, random GPS coordinates were
generated within the area of interest where the ConOps mission took place for each frame that was
sliced from the video. This process of random generation invalidated the correlation between the
latitude and longitude coordinates of the targets in the video and the coordinates that our software
calculates and then uses to determine proximity to other identifications. However, the target
refinement process could still be done with the knowledge that the final latitude and longitude
coordinates and target types would not align with the video used for the simulation. Noted in the
table above are the results from this refinement procedure. A total of 580 target identifications were
reduced down to just 7. Ultimately this shows that our software has the ability to recognize when it
has come across a target it has already identified and use that information to obtain a more accurate
and refined GPS coordinate for it.



Target Acquired
May 2022

Shown above are the results of the feature mapping part of the ATR algorithm. On the left of each
image is the training image used for each classifier method. Green circles and lines mark positive
correlations between the training image and the test image in the upper right corner. Blue circles
represent places where the feature mapping algorithm was unsuccessful in finding a match between
the training and test image. For the smiley face shown above the sheer number of green lines and
the minimal crossover of the lines indicates that there is a high correlation between the training
image and the test image, and thus this frame from the simulated video was correctly classified as a
smiley face. On the right. the same process for a frowny face classification is shown. There are less
successful key-point connections, however, the relatively low crossover of the green lines indicates
that the feature recognition algorithm was successful in identifying the target as a frowny face. This
process was done for each frame that was sliced from the video and frames where fewer than four
successful key-point connections were made were classified as a blank tarp.

Map Stitching

Our requirements for our map were to generate a map, by any medium, of the area of interest that
displayed all candidate targets and their classification. Because we were unable to ultimately
receive images from the actual final fly-off, our script was run on selected frames from a previously
recorded flight. As mentioned before, we opted to manually choose these sets of images from the
images taken from the video due to complications we encountered when trying to automate the
selection of images. The figure below displays what we consider to be the best outputs from our
script given the quality of our test video.



Target Acquired
May 2022

As we can observe from the images above, these two maps, while they both technically display the
area of interest, each display the field differently while still containing all of the candidate targets.
The stitching algorithm is limited mostly to the path of the plane, and as such these two maps
display two different passes of the field. The top map displays a larger area of the field and includes
the runway and a small amount of the periphery. The bottom map instead displays the entirety of
the field lengthwise and all of the targets.

Identification and GPS Coordinate Overlay

Wrapping up the discussion on the analysis results from the final simulation run, we have an
overview of the mission area map generated from the “identification and GPS coordinate overlay
algorithm”. Presented in the figure to the right is a digital map produced from text boxes and
location pins overlaid onto the map stitched using images provided by Wilson’s imaging team. It
should be noted that the resultant map was manually cropped to only include the region containing
each of the identifications before inserting into the report to conserve space, and that the text is not
clearly visible in this cropped image, unlike the base image due to a reduction in focus from the
inserted screenshot. As shown in the figure, the red location pins have been overlaid onto the
approximate centroid of each respective TOI/tarp, and text boxes with identification and GPS
coordinate designations have been overlaid at a fixed offset position from these locations to prevent
overlap. A limitation to these results is that for the purpose of the simulation, since the GPS
coordinates were randomly generated within the bounds of the GPS coordinates coinciding with the
AOI, they do not actually pair up with any of the identifications from the target recognition



Target Acquired
May 2022

algorithm. Thus, a major takeaway from these
results is that while the overlay functionality from
the simulation was successful, the base
functionality of the algorithm where the pixel
locations were determined through GPS coordinate
rescaling was only confirmed to be successful in
the pre-flight checks leading up to the mission
fly-off, and could not be validated from the
simulation run.

Error Analysis

As has already been mentioned, our code failed during the final flyout. We only learned after the
flight that the Pi was never able to establish a connection to the Pixhawk. We had tested connecting
to the Pixhawk numerous times before, and it was not an error we were expecting to see.
Unfortunately, the way our script was written, this error caused the rest of the script to fail.

There are ways to fix this specific error, such as having some way to communicate, in live time,
output messages from the Pi back to ground control. This way we could have known immediately
that the connection failed and asked the ASE team to land. However, I think there were many
uncertainties, driven by time constraints and testing constraints, that led our team to this moment
where the final fly-off did not go according to plan. For example, we only pieced together our entire
program a week before the final flight, and the program ended up being large. It consisted of
connection to the Pixhawk, acquiring images for map stitching, undistortion of those images,
running the map stitching itself, RGB, feature recognition, and then the handoff to the ADP team.
Each of these pieces in themselves could be 100 lines of code. So, a week before the final fly-off
we threw together these codes into one script. We attempted what testing we could, but the flow for
this large script was driven by reading in altitude and GPS information from the Pixhawk. In the
lab, we had no testing environment where we could simulate the plane flying according to a
mission file and read in that data to our script. As such, we could not test our script in full until it
was flying on the plane and the plane was flying according to a mission file. Realistically, then, we
only had three flights to run our entire code and debug. Ultimately, this was not enough time for us
to build the script we had set out to build.

A testing environment to run our script with parameters from a simulated flight would have been
extremely useful. We also should have asked the ASE team for a flight day devoted to testing our
own code. That way we could get more and shorter flights in with quicker feedback loops. We
update the code, the plane flies for 15 minutes, it lands, we see what goes wrong, update the code,
and then repeat. Proper logging was another aspect lacking in our code. During the first flights, we



Target Acquired
May 2022

had not incorporated a comprehensive debugging scheme into our script. Since we cannot see what
is happening to the Pi as it is flying, it was hard to know what worked and what did not.

Impact From a Global, Societal, and Environmental Perspective

Contributions: Rohan

The completed scripts and programs have the potential to create positive societal and environmental
impacts when implemented. The greatest benefit of the AFD having access to this technology is
that the average person affected by harsh weather conditions now has a greater chance of getting
assistance. With the UAV, the AFD can locate and deliver supplies to victims of flooding much
faster than they could’ve previously. Theoretically, stranded victims would be able to be located
and given supplies in a single pass from the UAV. As such, the stranded victims of flooding now
face less stress since there is the chance that the UAV will transport the supplies needed to get by
until the flooding becomes manageable enough for the AFD to navigate. Another positive impact
that comes from depending on automated machines to perform these difficult tasks is that the
members of the AFD will no longer be required to risk their lives as often to save the trapped
individuals and families. With the UAV, waiting longer times for the weather to dissipate before
heading out in-person is now a viable strategy. There are also several environmental impacts to
utilizing this machinery. By depending on the UAV to locate targets and deliver supplies the AFD is
able to save time and energy. A UAV will not face the same navigational restrictions during a
natural disaster that a non-aerial vehicle will. Additionally, UAVs often use batteries and electricity
as a source of power instead of gas like other search and rescue vehicles. All in all, there are only
positive impacts on society and the environment should this search and rescue strategy be put into
effect by the AFD. This project is designed to help people and its completed version will certainly
make it easier to do so.

Conclusions and Future Work

Contributions: Rohan

After the completion of the main scripts, the target recognition, and map generation, they were
integrated into Raspberry Pi and set up with the ASE team’s plane. It is important to note that the
scripts were implemented several times over the past few months. Unfortunately, due to unforeseen
circumstances, technical issues prevented the Raspberry Pi from starting during the final flyout. As
such, the COE team decided to use a video recording of a past flight to simulate results that serve as
the final flyout. The conclusion will focus on the results achieved from past flights and the
simulation.

The first deliverable was the Automated Target Recognition software. In both the practice flights
and the simulation, this script was able to successfully identify positive and negative targets with a
small number of false positives. When looking at practice flight test #4, we saw that out of a little
bit more than 20,000 frames, there were less than 25 false positives. After touching up this script,
we inputted the video recording of the flight and achieved a similar level of success regarding target



Target Acquired
May 2022

identification. However, since our final results relied on a video recording, GPS coordinates had to
be randomly generated for each frame that was analyzed.

The next deliverable was the Map Generation script. Even though maps were able to be
successfully generated from the practice flight and the simulation, many issues arose that needed to
be addressed before the final product could be presented. Due to the hardware limitations of the
camera and the plane, there was a severe distortion in the camera that created extremely off-putting
maps of the observed area. As such, a camera calibration matrix was calculated and hard-coded into
the scripts to ensure that all the images that were to be inputted into the map generation algorithm
were undistorted. The preliminary results, before the camera calibration was completed, include a
successfully generated map with quite a lot of radial distortion. The tarps with the targets can be
observed on this generated map. However, the quality of it leaves much to be desired. Upon the
completion of the calibration script, the camera calibration matrix was implemented into the main
scripts in order to achieve new results. Fortunately, the generated map from the simulation is made
up of images that have significantly less distortion to it. While it isn’t necessarily perfect, the map
generated in this iteration is able to showcase all five targets in a minimally distorted view. All 3
empty tarps and the 2 with the positive and negative targets on them are displayed on the map.

Due to the fact that technical issues prevented the COE team from getting proper results on the
actual flyout, there are many steps that need to be taken for the future application of this project.
Since the final outputs are a result of a simulation, the ability to generate accurate GPS coordinates
in real-time wasn’t even tested. Furthermore, the scripts were implemented separately instead of
together in order to get the final results. Therefore, in order to ensure that this issue does not repeat,
the COE team should be able to have flights with the plane to only address their own issues. Over
the past semester, the COE teams were only able to test their deliverables at the convenience of the
ASE teams. This created situations where both teams were working on their own projects on the
airfield, preventing the COE team from being able to analyze their issues undisturbed.

The COE team believes that the reason no results were gathered was that the Raspberry Pi didn’t
properly sync up with the rest of the plane, thus the code was never even executed. This is a result
of technical issues on the day of the flight that caused the ASE and COE teams to integrate the
hardware in a different way that was not fully tested due to time constraints. Therefore, the first
major step in future work will be to properly integrate the Raspberry Pi with the plane and ensure
that there is no chance of startup failure.

The next area of future exploration involves specific applications of the Target Recognition and
Map Generation scripts. The most obvious is that the COE team will need to make sure that the
map is generated and transmitted successfully in live time. Circumstances prevented the testing of
this feature, however, it is still an important deliverable that needs to be met. In addition, the COE
team was hoping to be able to incorporate interactive elements into the generated map so that the
receiving team can utilize the map with greater ease. The next area of development is the target
recognition software. The COE team noticed that there were a lot of other features at the airfield
that could be identified in a more advanced version of the code. In addition to the targets, it is
believed to be important to identify other static features like trees, grass, roads, and buildings. By
having this code identify other features, it is able to “disqualify” these areas from its primary
purpose. Additionally, changes in elevation from the ground need to be noted as well in order for
the Payload Team to have more accurate calculations. Potentially communicating with the Pixhawk



Target Acquired
May 2022

to gather these elevation changes and outputting them is an important next step to improving the
overall effectiveness of the UAV. Finally, the algorithm should continue to be trained so that it is
able to theoretically differentiate between human emotions. Implementing this aspect of the code
can help future team members discern between levels of danger in the victims being saved.

All in all, despite the successful results gathered from the practice flights and the simulation, it is
quite obvious that the biggest limitation for the engineering teams was time. Should more time be
provided in the future for the team members, it is almost certain that the scripts will be more refined
and have more complex qualities to them. Additionally, it will make certain that the overall
integration of all hardware has minimal issues and will also allow for proper backup plans to be
created.



Target Acquired
May 2022

References

Hoed T., Brandt D., Soerge U., and Wiggenhagen M. (2012). “REAL-TIME ORIENTATION OF A
PTZ-CAMERA BASED ON PEDESTRIAN DETECTION IN VIDEO DATA OF WIDE
AND COMPLEX SCENES”. Intercommission Working Group III/V.

Lt-C/M2420 (n.d.). https://www.lumenera.com/products/industrial - scientific/ltx2420.html.
Accessed: 2022-03-01.

Machine Vision with Python (n.d.). https://openmv.io/. Accessed: 2022-03-01.Sun J., Li B., Jiang
Y., and Wen C. (2016). “A Camera-Based Target Detection and Positioning UAV System for
Search and Rescue (SAR) Purposes”. Sensors (Basil) 16.11,p. 1778.


